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Ordering of the lamellar phase under a shear flow
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The dynamics of a system quenched into a state with lamellar order and subject to an uniform shear flow is
solved in the large-N limit. The description is based on the Brazovskii free energy and the evolution follows a
convection-diffusion equation. Lamellas order preferentially with the normal along the vorticity direction.
Typical lengths grow asgt5/4 ~with logarithmic corrections! in the flow direction and logarithmically in the
shear direction. Dynamical scaling holds in the two-dimensional case while it is violated inD53.
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Many systems in nature exhibit lamellar order. One e
ample is a diblock copolymer melt where chains of typeA
andB covalently bonded end to end in pairs segregate at
temperatures withA-B junctions forming a stack of lamella
@1#. In ternary mixtures a lamellar phase is stable with
dered sheets of surfactant separating~say! oil and water do-
mains@2#. Lamellar order is also observed in Raleigh-Be´nard
cells, where convective rolls form above the convect
threshold@3#. Further examples include smectic liquid cry
tals @4#, dipolar fluids with long-range interactions@5#, and
chemically reactive binary mixtures@6#. A theoretical model
for the general description of the lamellar-disordered ph
transition was proposed by Brazovskii@7# who showed the
first-order character of the transition induced by fluctuatio

Lamellar phases under an applied shear flow show a v
rich behavior that is relevant for many applications@8#. A
variety of transitions in morphology and orientation occur
shear rate and temperature are changed. Stable configura
of lamellas lying along the flow with the normals different
oriented have been observed@9,10# and analyzed evaluatin
the effects of the flow on the fluctuation spectra@11–14#.

Nonstationary properties are far less considered@15–18#.
In this paper we study the effects of a simple planar sh
flow on the ordering of the lamellar phase in a syst
quenched from an initially high temperature disordered st
We present the first analytical results on the kinetics of t
system by solving the Brazovskii model in the limit of a
infinite number of components of the order parameter. Thi
one of the few methods allowing an explicit solution f
phase ordering systems@19#. A similar approach for fluids
under shear flow has been used in Refs.@20–27#.

The behavior of quenched binary mixtures without im
posed flows is characterized by dynamical scaling: The st
ture factor obeysC(kW ,t)5R(t)Df @kR(t)#, whereR(t);ta is
the typical domain size andD is the space dimensionalit
@28,19#. In the case of a fluid with lamellar order, if the ord
parameter is not conserved as in the Swift-Hohenberg m
for Raleigh-Bénard convection@29#, regimes exhibiting dy-
namical scaling have been found@30#. In models with con-
served order parameter, when diffusion is the only segre
ing physical mechanism, simulations show the entanglem
1063-651X/2002/66~1!/016114~4!/$20.00 66 0161
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of the fluid into frozen intertwined structures@31,32#. In this
case the effects of hydrodynamical modes are crucial
reaching order on large scales@33#.

When shear is applied, our results show that lame
grow preferentially with the perpendicular orientation@12#,
namely, along the plane formed by the flow and the sh
~velocity gradient! directions. Their typical size, obtaine
from the second momentum of the structure factor, grows
gt5/4Aln t in the flow direction and asAln t in the shear di-
rection. Surprisingly, we find that the dynamical scaling
obeyed in two dimensions but not inD53. Our results con-
cern the cases of conserved and not conserved order pa
eter, and apply to most of the systems mentioned above

We consider the Brazovskii free energy,

F$f%5E drWH r

2
f21

u

4
f42

b

2 U“fU21
1

2
~¹2f!2J , ~1!

wheref(rW,t) is the order parameter field andu.0. With a
negative value ofr andb,0 the system orders in one of th
two minima of the local potential. However, whenb.0 in-
terfaces are favored and a modulated state with wave ve
kM5Ab/2 is stable@7#.

When a flow is imposed, the kinetics can be described
the convection-diffusion equation@34#

]f

]t
1¹W •~fvW !52Gp

dF
df

, p50,2, ~2!

where

G05G, G252G¹2 ~3!

andG is a mobility coefficient.p50 describes systems wit
nonconserved order parameter~NCOP! and corresponds to
the Swift-Hohenberg equation@29#; the casep52 is for con-
served order parameter~COP! and applies, for example, to
copolymer melts. For uniform shear flow in thex direction,
vx5gy, g being the shear rate. Equation~2! neglects ther-
mal fluctuations and possible effects due to differences
viscosities between the two components@12#. The complete
©2002 The American Physical Society14-1
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description should take into account the coupling of Eq.~2!
with the Navier-Stokes equation. However, the study of E
~2! is a prerequisite for any more general theory and usu
applies to intermediate temporal regimes, as recognized
phase separation of simple binary mixtures@19#.

Equation~2! can be studied analytically generalizing th
field f to a vector order parameter withN components and
taking the large-N limit @35#. One obtains the following
equation in Fourier space for the structure factorC(kW ,t)
5^f(kW ,t)f(2kW ,t)&,

]C~kW ,t !

]t
2gkx

]C~kW ,t !

]ky

522Gkp@r 1uS~ t !2bk21k4#C~kW ,t !, ~4!

where we have dropped the component indices due to in
nal symmetry.S(t) has to be computed self-consisten
through

S~ t !5E
uku,L

dkW

~2p!D
C~kW ,t !, ~5!

L being an ultraviolet cutoff. For a symmetric mixtur
quenched from a high temperature homogeneous phas
appropriate initial condition isC(kW ,0)5D, whereD is a con-
stant. Equation~4! can be integrated yielding

C~kW ,t !5DexpH 22GE
0

t

dtKW p~t!@K 4~t!2bK 2~t!

1r 1uS~ t2t!#J , ~6!

whereKW (t)[kW1gtkxeW y . Defining

Q~ t ![E
0

t

dt@r 1uS~ t2t!# ~7!

the analysis can be carried out asymptotically through
ansatz

Q~ t !5kM
4 t2

1

2GkM
p

~2 ln t2 ln ln t1 ln vp!, ~8!

wherevp is a constant to be determined. Equation~8! will be
justified a posteriori by proving the solution of the self
consistency problem. Specifically, the large time valueS`

calculated through Eq.~5!, inserted into Eq.~7!, must satisfy
Eq. ~8! asymptotically, namely,

S`5~kM
4 2r !/u. ~9!

We now briefly illustrate this for COP inD53 @36# setting
G515u5b52r .

The symmetry of the problem suggests the use of
cylindrical set of variables (kx ,k' ,u), where ky5k'cosu
and kz5k'sinu. Naive power counting applied to Eq.~6!
01611
.
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indicates that wave vectors in the flow direction scale asym
totically as kx;t23/2 while in the perpendicular direction
k'2kM;t21/2. Then, introducing the new variablesX
5kxL i(t), Q5(k'2kM)L'(t), with L i(t)52A2/3kM

2 gt3/2

and L'(t)52A2tkM
2 , and taking into account Eq.~8!, Eq.

~6! reads

C~kW ,t !5v2D
t2

ln t
e2[ f (X,Q,u)1g(X,Q,u,t)] ~10!

with

f 5Q21A3QX cosu1X2cos2u ~11!

andg(X,Q,u,t)5( j 51
16 t2 j /2gj , wheregj are polynomials in

X,Q,u, ln t. For long timesg can be shown to provide a re
evant contributiong2. 9

160(X4/kM
6 )2(3/4kM

6 )X2 ln t only in
the regionQ;0, cosu;0. Then the integration overQ andu
can be performed yielding

S~ t !.
A3D

32kM
3 p3/2

v2

g ln tE2`

`

dXe2X2/82g2 /tI 0~X2/8!,

~12!

where I 0(z) is a Bessel function. The integral of Eq.~12!,
evaluated by the asymptotic expansion ofI 0(z) at largez,
behaves as lnt/Ap. Hence at large timesS(t) approaches the
constantS`5A3v2D/32p2kM

3 g. A comparison with Eq.~9!
fixes v2532p2kM

3 g(kM
4 11)/A3D and verifies the ansatz.

Due to the presence ofg, the functionC(kW ,t) of Eq. ~10!
cannot be cast in a scaling form. However, different scal
behaviors are obeyed in the regions where the functionsf or
g can be respectively neglected. In particular, forQ;0,
cosu;0, whereg dominates,C(kW ,t) scales in thex direction
with respect to the lengthl i(t)5(2/5)1/4AkMgt5/4 different
from L i(t). In D52, on the other hand, where the contrib
tion of the functiong is always negligible, one finds th
scaling formC(kW ,t)5v2Dt2e2[ f (X,Q,0)].

Ordering properties are usually inferred from the m
menta of the structure factor. We defineRx

5@*dkWC(kW ,t)/*dkWkx
2C(kW ,t)#1/2 and similarly for the shear

and vorticity directions. In the absence of dynamical scal
definitions ofRx based on different momenta ofC(kW ,t) may
lead to different results. However, in this case it can
proven that changing the order of the momentum does
change the growth exponent but only the logarithmic corr
tion. From Eq.~10! we find Rx;gt5/4Aln t, Ry;Aln t, and
Rz;kM

21 . The behavior ofRx shows the relevance of th
scaling with respect tol i(t) for the ordering of the system
The growth ofRy indicates that lamellas order preferential
in the planex-y. In D52 we find Rx;gt3/2 and Ry;kM

21 .
The same results are obtained with nonconserved order
rameter. The behavior ofRx ,Ry ,Rz resulting from the nu-
merical integration of Eq.~4! with an adaptive grid algorithm
is shown in Fig. 1. After the initial isotropic evolution, th
4-2
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shear-induced anisotropy becomes evident for values of
strain gt larger than 1 and agreement with the analyti
behavior is observed.

It is also useful to illustrate the behavior of the structu
factor ~10! shown in Fig. 2. The maxima ofC(kW ,t) are lo-
cated atkx

255(1/kM
4 g2)(ln t/t3),ky50,kz

25kM
2 for COP and at

FIG. 1. The typical lengths as a function of the shear strain
thex (*), y (s), andz (d) directions. The lines are proportional t
gt5/4(ln t)1/2 and (lnt)1/2.

FIG. 2. The structure factor is shown for the COP case on
planeskx50, ky50, kz50, kz5kM and for the NCOP case on th
planesky50, kz5kM .
01611
he
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kx50,ky
21kz

25kM
2 for NCOP. The shape ofC(kW ,t) on the

planeskx50 andkz50 is qualitatively similar for COP and
NCOP. At kx50, in particular, the wave vectors are not a
fected by the flow and the structure factor has a circu
structure with radiuskM . At ky50 orkz5kM the behavior of
C(kW ,t) depends on the conservation law. The maxima
C(kW ,t) developed with NCOP are splitted with COP into
pair of symmetric, narrowing peaks. This pattern is typical
the case with conserved dynamics and has been observ
other segregating systems under shear flow@37#.

Finally we turn to the study of the rheological propertie
In phase separation of binary mixtures the flow acts aga
the surface tension inducing stretching of domains follow
by breakup processes and burst of small bubbles@38,39#. An
excess viscosityDh is measured@40#: it reaches a maximum
generally forgt>1 and later decays. In our case we meas
the evolution of the shear stresssxy deducible in a genera
way from Eq.~1! in terms of the structure factor; it is give
by sxy(t)5*(dkW /(2p)D)kxky(2k22b)C(kW ,t) @24#. An ex-
cess viscosity can be introduced asDh(t)52sxy(t)/g @41#.
Using Eq.~10! we find Dh;g21t22. The numerical results
of Fig. 3 show that, after reaching a maximum, the decay
Dh agrees with the analytical behavior. The other rheolo
cal indicators can be shown to behave similarly.

In conclusion, we have studied the ordering kinetics o
lamellar phase in shear flow by solving the dynamics of
convective-diffusion equation in the large-N limit. Regarding
the debated question of the stable orientation, our results
in agreement with the expectation of the stability of the p
pendicular phase at high shear rates@12#. In D53 a logarith-
mic growth law is found along the shear direction whileRx

;gt5/4Aln t. Interestingly, the same exponent 5/4 is found
simple binary fluids@26,27#. Our results show that the sca
ing depends on dimensionality and is violated inD53. This
is at variance with the case without shear where the sa

n

e

FIG. 3. The excess viscosity as a function of the shear str
The straight line has slope22.
4-3
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approach gives a scaling form independently ofD @42#. Vio-
lation of scaling is quite uncommon@43,19#. In this context
this phenomenon may be related to the existence of
lengthsL i , l i growing with different exponents.

A natural question is the relevance of the behavior of
large-N model to the physical case withN51. As without
flow, symmetry arguments suggest an analogy between
coarsening behavior of lamellar phases and that of vecto
models and one would argue that the large-N results give
reliable indications also for the physical case@44#; in particu-
lar, the large-N exponent is the one expected asymptotica
l

.

-

,

ro

s.
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@30#. Simulations of the scalar case with shear could elu
date this point; however, strong finite size effects make
evaluation of the growth exponent difficult~see Ref.@39# and
references therein!. We also mention that it will be importan
to study how the presence of hydrodynamics affects the
ture provided in this paper.
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